(45) Date of publication:

(12)UK Patent (19)GB (1 2 415 806 (13)B

21.03.2007

(54) Title of the invention: A dynamic software integration architecture
(61) INT CL: GO6F 9/455 (2006.01)
(21) Application No: 0512591.9 (72) Inventor(s):
Neil Gilbert Siegel
(22) Date of Filing: 21.06.2005 Maria Heloisa Penedo
(30) Priority Data: (73) Proprietor(s):
(31) 10884071 (32) 02.07.2004 (33) US Northrop Grumman Corporation
(Incorporated in USA - California)
(43) Date A Publication: 04.01.2006 1840 Century Park East,
Los Angeles M/S 30/110/31 90067,
California, United States of America
(62) UK CL (Edition X):
G4A AFP (74) Agent and/or Address for Service:
. Marks & Clerk
(56) Documents Cited: 66/68 Hills Road, CAMBRIDGE,
EP 1122652 A2 US 6738975 B1 Cambridgeshire, CB2 1LA,
US 20040216147 A1 United Kingdom
(68) Field of Search:

As for published application 2415806 A viz:

UK CL (Edition X) G4A
INT cL? GO6F
Other

WPI, EPODOC, PAJ, INSPEC, IP.com, IEL,

TXTE
updated as appropriate

1/6

’/-10

12 16
COMPONENT COMPONENT
#1 #2

P oo
INTEGRATION INTEGRATION
CONNECTOR CONNECTOR

#1 #2

COMMUNICATION
MEDIUM

26 INTEGRAT/I‘;)ZN2
— r's CONI\LEJCTOR
[—&F]
b
COMZ(')\‘NEI:;
=

INTEGRATION DESIGN STATION (OPTIONAL)

FIG. 1

2/8

¢ Old

WNIa3In
NOILLYOINAININOD

SININOdNOD
/SHOLO3NNOD
NOILVHOILNI
d3aH10

A%}

o—"

dni3s
NOLLYINOIINOD

26—/

S1IN3INOdWOD
-ans
NOLLYHOILNI

138 371N
NOILVHOALNI

gy~

ANIONZ
NOILVILOO3N

oy’
HO1O3INNOD NOILYHOTLNI

IN3INOJNOD

)

2 gl

3/6

60

INTEGRATION RULE SET

- DATA SELECTION RULES

- RESOURCE SYNTAX AND
SEMANTIC RULES

- INTERACTION RULES AND
GOALS
- RESOURCE ACCESS RULES

- COMMUNICATION MECHANISM
- FLOW CONTROL

FIG. 3

/—70
FGO

INTEGRATION RULE SET

82 OTHER

INTEGRATION
NEGOTIATION 72 CONNNECTORS
PROFILES

(#N) ———— NEGOTIATION ENGINE ——
| 76—~ DATA SELECTION AND)

NEGOTIATION PROTOCOLS

78~ DATA CONFIGURATION - 74
PROTOCOLS

8
"N DATA TRANSFER PROTOCOLS

FIG. 4

4/8

|\ T T T T T T T T T - \-- - T -0 00077 1
_ _ T |
|} $700010d ¥3JSNVHL V1va ! S$7000104d HIISNVHULVIVA R _,,, |
logd | SuiasnwdL | _
_ $71000.104d | 10dLNOONVIYa 10901044 “
"mu 1 NOILLYHNOIANOD Y1va | “ NOLLVHNSIANOD Viva N—0LL _
[

_ S70D0.L0%d NOILYILOD3AN _ ,T S71090.L0Hd NOILVILOD3N "
TNT\ aNV NOILOT T3S Viva < _ ANV NOILOT T3S ViLVa N—g01 '
_ | NOILVILODAN |
. | TOULNOONVLYA | _
.wﬁ\ INIONT NOLLYILOD3N | : INIONI NOILVILODAN 901 .
| A [713dWod A |
| | 3qigy3ano |
_ | HOLINOW | _
| i

" 4 'l (GvNOLLdO) | | = |
135 TN Q!] NOWVIS | ot 135 3NY |

“ w.__n_._n.u%mw_w NOILVHOA1NI ! NOIS3d | |NOILYYOALNI ZOm__._..ﬁ._m.vmw_m_wz _
' NOLLYI N | [NoiLvdoauN| | | |

_
“ ze1—" zz— | o~ _.wlSlLl lllllll v .F.ﬁ.\l — .“
vz oy
o Lt
ININOJNOD FHYMLAOS AININOLNOD FHVYMLL0S
—J
0zl zo1—’

00 _‘l\

5/6

ESTABLISH LOGICAL AND PHYSICAL CONNECTIONS
BETWEEN COMPONENT AND INTEGRATION CONNECTOR

_—200

;

PUBLISH INTEGRATION RULE SET ASSOCIATED WITH
SOFTWARE COMPONENT

l

SUBSCRIBE TO INTEGRATION RULE SET ASSOCIATED
WITH CONNECTING SOFTWARE COMPONENT

| —220

:

NEGOTIATE ACCESS PROFILES, ESTABLISH CONNECTION
PROFILES AND TIME PROFILES

'

DEFINE FLOW CONTROL RULES FOR EXCHANGES

_——240

'

INVOKE MONITOR, OVERRIDE AND/OR COMPEL DATA
ACCESS TO REDEFINE RULES

| —250

!

BUILD NEGOTIATION PROFILES

|_—260

'

EXCHANGE DATA BETWEEN SOFTWARE COMPONENTS

| —270

FIG. 6

6/6

}
rocesoNG| coupurer | $0 | {Gparing 50 g
NIT 321 / , T
H 1]
l = i Applications __ | 134
323 ysiem 325 : |mmmmmm———————
o | Memev |- T -
[~ RAM i —————— D— _t-—-_---'
I
y P 324 : _______ ata_____) \.338
ROM
332 4327
329
/
333 Floppy Drive Al 4,0
Interface [———»
DISK 331 247
334 Ve
Interface | > CD-ROM Drive MONITOR
pIsk [T 340
r
| Video 3% KEYBOARD
Adaptor 3 -
346 342
:‘__/ MOUSE
> IntZ?f:ce
+—p MODEM |a—i-»| WAN | REMOTE
\ 152 / COMPUTER
354
-~ Network » > LAN
Adaptor H <>
k353 351 J Memory
Storage
349 —

FIG. 7

350

gLl S]00

A DYNAMIC SOFTWARE INTEGRATION ARCHITECTURE

TECHNICAL FIELD

[0001] The present invention relates generally to software, and more

particularly to a software integration architecture.

BACKGROUND

[0002] Integration of currently existing non-compatible system/software
components is a necessary reality. Presently, there are thousands of existing
computer and/or software systems (e.g., legacy systems) that were designed to
support information exchange with, at most, a defined group of systems.

Economic factors make it necessary to continue to use these systems for some RITTH

soee

period of time, yet in many cases it is desirable to integrate these defined groups el
of systems with a number of other systems outside of their existing integration "
capabilities. Today's global networking /communications capability provides a -E-

data path between many of existing systems, but it has proven expensive and E'- .
time-consuming to modify the software and data structures of these systems, so

as to provide complete integration. Teesst
[0003] Over the last ten years many mechanisms for integration have .
been offered for supporting different aspects of integration and interoperability.
Work-flow mechanisms, for example, have been built to support limited control
integration (e.g., linear process execution). However, work-flow systems rely on
sequential execution, and are somewhat impractical for systems based on an
event-driven paradigm. Most approaches to achieve integration that have been

offered to date either only work for systems built from the beginning around their
design paradigm or software structure, or require expensive and time-consuming
re-engineering of the existing system. Therefore, a technique to provide a quick

and inexpensive integration solution of existing computer / software systems

would be highly desirable in the business community at large.

[0004] In many cases, achieving interoperability between two or more
computer / software components is significantly complex. Therefore, integration
connector topologies have been developed to facilitate the integration process.
A typical integration connector topology includes developing a plurality of custom
connectors at a given component, where each component is customized to
interact unilaterally with a “mating” custom connector in another component /
system. Therefore, each component / system in the integration process needs a
plurality of customized connectors. Development of these customized
connectors requires knowledge of the resources / data required and provided by
each of the component / system being integrated. In order for those connectors
to be written, changes of the software in the existing components / systems and
a direct connection among those components / systems is typically required. RITTH

[N N J

[0005] Another connector topology includes employing a "middleware
component” (e.g., CORBA, many others) to abstract the actual interfaces of the
other systems and/or their location. Middleware connectors can be developed 'E'

only needing knowledge about the middieware language/mechanism and the . -,:'

resources/data it needs or provides. However, the numbers of connectors may

still be the same as the custom connector topology, and the extent of the effort ‘ .

required to re-engineer an existing software system to utilize such a middleware *e

component can be prohibitive.

SUMMARY

[0006] The present invention relates to a software integration architecture
for integrating software components. The architecture includes software
modules operative to spontaneously integrate distributed components/systems
into new integrated systems via dynamic integration connectors, with minimal or
no changes to the existing software components / systems / databases. The
architecture includes an integration rule set associated with each of a plurality of
software components. The integration rule set defines rules associated with
access and receipt of resources for a given software component, and is

structured in a manner that requires little or no change to the existing software

components. The architecture also includes a negotiation engine. The
negotiation engine is operative to negotiate dynamically with respective
connecting software components to define rules associated with integration of
the software components, wherein a negotiation profile is generated for each
software component that defines data and/or control connectivity between a
respective software component and a connecting copy of the software
component, based on the negotiations associated with each of the plurality of
software components. The negotiation engine can be a single remote software
module. Alternatively, each integration connector can include a respective
negotiation engine.

[0007] In particular, the present invention provides a computer system to

integrate software components, the computer system having a software

of a plurality of software components, the integration rule set defining rules to
access and receive resources for a given software component for integrating the
given software component with the remaining software components of the
plurality of software components; a negotiation engine that is operative to
negotiate dynamically with respective connecting software components, the
negotiation engine being capable of selecting data protocols from a plurality of
data protocols to define rules to integrate the software components based on the
integration rule set; and an integration sub-component set that provides a
selection of data configuration protocols and data transfer protocols that can be
employed by the negotiation engine to define flow control, data conversions and
communication mechanisms for transferring data and control between the
software component and at least one connecting software component, whereby
the computer system integrates connecting software components.

[0008] Another embodiment of the invention relates to a method of
integrating software components. The method comprises publishing an
integration rule set associated with a software component, and subscribing to an
integration rule set associated with a connecting software component. The

method further comprises negotiating with the connecting software component to

integration architecture comprising: an integration rule set corresponding to each , <.

define data access profiles, connection profiles and flow control profiles for the
exchange of data and/or control between the software component and the
connecting software component based on the published and subscribed
integration rule sets, and building a negotiation profile that defines the data
and/or control connectivity between the software component and the connecting

software component based on the negotiations.
[0008a] In particular, the present invention also provides a method of using

a computer system to integrate software components, the method comprising:
publishing an integration rule set corresponding to a software component;

subscribing to an integration rule set corresponding to a connecting software
component, the respective integration rule sets defining rules for access and

receipt of resources for integrating the software component with the connecting ,***°.

software component; negotiating with the connecting software component by LA

selecting data protocols from a plurality of data protocols to define data access
profiles, connection profiles and flow control profiles for the exchange of data

and/or control between the software component and the connecting software $ e

component based on the published integration rule set and the subscribed to

integration rule set; and building a negotiation profile that defines the data and/or '::".

control connectivity between the software component and the connecting
software component based on the negotiations.

[0008Db] The present invention also provides a dynamic integration system
comprising: means for generating integration rule sets for software components,
the integration rule sets defining rules for access and receipt of resources for
integrating software components; means for negotiating data access profiles,
connection profiles and flow control profiles for the exchange of data and/or
control between software components based on the integration rule sets, the
means for negotiation selecting data protocols from a plurality of data protocols;
means for building negotiation profiles that defines the data and/or control
connectivity between software components; and means for compelling
negotiations by modifying integration rule sets corresponding to the software

components.

BRIEF DESCRIPTION OF THE DRAWINGS
10009] FIG. 1 illustrates a system for employing dynamic integration
connectors in accordance with an aspect of the present invention.
[0010] FIG. 2 illustrates a system for integrating software components in
accordance with an aspect of the present invention.
[0011] FIG. 3 illustrates an integration rule set associated with a dynamic
integration connector in accordance with an aspect of the present invention.
[0012] FIG. 4 illustrates a dynamic integration connector system in
accordance with an aspect of the present invention.
[0013] FIG. 5 illustrates a block diagram of a system for integration of

software components in accordance with another aspect of the present invention.+,,..*

[0014] FIG. 6 illustrates a methodology for integrating software .t
components in accordance with an aspect of the present invention. .
[0015] FIG. 7 illustrates an embodiment of a computer system. U
DETAILED DESCRIPTION .::::.
[0016] The present invention relates to an architecture for integrating AR

software components (e.g., automatic sharing of data and/or control between
software components). The integration architecture provides integration
connectors (e.g., software modules) operative to spontaneously integrate
distributed software components / systems into new integrated systems via
dynamic integration connectors, with minimal or no changes to the existing
software components / systems including, for example their data bases.
Spontaneous integration is defined as the automatic sharing or passing of data
and/or control from one component to another either during or after termination of
its execution, in which the components are previously incompatible or un-
integrated data storage components, software modules, and/or systems, and for
which the configuration / setup / establishment activity is comparatively modest.

The configuration / setup / establishment activity supports the physical

connectivity of the components, connectors and communication medium and

interrelates the elements of the integration connectors.

[0017] Upon invocation (e.g., after the configuration / setup /

establishment activity is complete), the integration connectors dynamically

integrate with one another by negotiating the sharing of data and/or control of
associated software components between one another, to define an integration
configuration that establishes communication paths and sequences between

software components to build an integrated system, and in accordance with the

rules defined to govern that instance of interconnection. The integration

connectors are operative to modify spontaneously (e.g., in real-time) integration
configurations in response to changes caused by system / component changes,

and/or the adding of additional systems / components to the current integrated

system. Therefore, the dynamic integration connectors can constantly monitor . ses

interface and work-flow connection opportunities available at any instant in time.

[0018] FIG. 1 illustrates a system 10 that employs dynamic integration .te

connectors in accordance with an aspect of the present invention. The system E ',:'

10 includes a plurality of software components labeled #1 through #N, and

associated dynamic integration connectors labeled #1 through #N, where N is an :._
integer greater than or equal to two. The plurality of software components are S
coupled via respective integration connectors through a communication medium

(or mixtures of media) 20 with little or no change to the components themselves.

The communication medium 20 can be a process, an operating system, a

middleware infrastructure, a local-area or wide-area network (wired or wireless),

or a mixture of such mechanisms, which provides one or more communication
mechanisms (e.g., paths and protocols) to pass data and/or control between

software components.

[0019] Each integration connector is a particular instantiation of a
generalized integration connector model. This particular instantiation may be
realized before or during execution through manual modification of the
generalized integration connector model, or through an automatic and dynamic

generation mechanism. In either case, the particular instantiation will be able to

negotiate dynamically with other integration connectors in support of over-all

data/control exchange objectives.

[0020] The integration connectors may employ data and/or schemas in
databases, and integration rules in order to determine interface and control-flow
connection opportunities available at any instant in time. The integration rules
associated with a given software component may be generated, either at

invocation, assembly, initiation, or execution time. Additionally, the integration
connectors can generate executable software programs and control mechanisms

(e.g., negotiation profiles) that implement the appropriate (point-to-point) data

links, rules, format and unit-of-measure conversions, and trigger /

synchronization mechanisms in response to negotiations for control and/or data
between integration connectors. svee

[0021] Upon activation, each integration connector may spontaneously ¢ 3°3

negotiate with other components or with middleware, to define data access
privileges based on fields of interest, communication link connections (e.g., data ‘E'
provided to a respective system, data provided from a respective system), data ‘

mappings and conversions, establish communication protocols, and timing

[XX J

updates. This process can be repeated periodically or driven by events, so as to .::"

identify spontaneously new integration opportunities that arise from new
connectivity paths that may asynchronously become available to recover from
link outages, or new components added to the system. Furthermore, integration
connectors may define flow-control rules to determine a domain work-flow

associated with the overall system.

[0022] In one aspect of the invention, the integration connectors may
employ one or more data access schemas that allow connectors to extract data
from an associated connector. For example, one schema might allow the
module to extract one or more fields of data from a database. Schemas for
interoperation may include XML schemas, or other forms of data definition. The
integration connectors further comprise one or more data configuration protocols.
The data configuration protocols provide instructions to the system 10 on the

handling or mapping of extracted data in accordance with configuration data

provided by integration rules, or by a user at an integration design station 26.
These instructions can include unit conversions for one or more data fields,
truncation instructions for long decimal values, and similar formatting issues. For
example, the data configuration protocols can contain instructions to convert all
received time data to minutes, to maintain consistency within a given software
component and/or system.

[0023] The integration connectors further include one or more data
selection and negotiation protocols that allow an integration connector to identify
data fields of interest within its associated component. A user at a computer
associated with the respective integration connector can determine the fields of
interest or the user can set the fields of interest at the integration design station
26. The data selection protocol identifies available output data fields of interest RITTR

and desired input fields of interest in its associated component. These available Y
and desired data fields can be provided to one or more other components as part T
of a data negotiation. ese

[0024] Data transfer protocols at the integration connectors locate other *° “.

operatively-connected components via their respective integration connectors,

and control inter-component communications. The components can be
connected as part of a local area network, a wide area network, as part of an
inter-network connection or via a middleware component. The data transfer
protocols can comprise network communication protocols (e.g., TCP/IP), as well
as any other desired communication protocols. Once another integration
connector is located, the connectors may exchange information as to their
respective component's available and desired data fields, and automatically
establish a data flow path between the two components. For example, if a
component maintains a list on employee names, and another component
requires it, the data negotiation protocols can negotiate a one-way mapping of
the employee name fields from the first component to the second component. At
the second component, the data field can be formatted by the data configuration

protocols to a desired standard before it is provided to the second component.

[0025] The integration design station 26 can be part of an architecture.
The integration design station 26 can interactively support the generation of
integration connectors statically or dynamically. The integration design station 26
can also provide execution control monitoring that reads and/or executes the
integration rules from the connectors or passes to them the necessary data
and/or control-flow during execution. Thus, the integration design station 26 or
the execution monitor can provide functionality associated with initiations,
sequential control, event control, and monitoring of the data or control-flow
processes. It could host a central negotiation engine. Additionally, the
integration design station 26 can be provided with over-riding capabilities

associated with the spontaneous negotiations between components, by defining

and/or over-riding integration rule sets associated with the integration LLLN
connectors. :;.
[0026] FIG. 2 illustrates a system 40 that employs an architecture for T
integrating software components in accordance with an aspect of the present “

invention. The system 40 includes a dynamic integration connector 44 that E.'.:'

provides an interface between a software component 42 and other dynamic

L d

integration connectors/ software components over a communication medium 52. °**°

. &
L

The software components can reside in a single system or be distributed across
a plurality of systems connected together by one or more mediums. The
dynamic integration connector 44 includes a negotiation engine 46, an integration
rule set 48, a set of integration sub-components 50 and a configuration setup 52.
The configuration setup component 52 establishes the logical and physical
connections between the software component 42 and the integration connector
44, and the integration connector 44 with the communication medium 52.

[0027] The integration rule set 48 defines rules associated with integration
of the software component 42 with other previously incompatible or unintegrated
software components (e.g., data storage, computer systems). These rules can
include a software component identifier and the syntax and the semantics of the
resources (data, processes, functions) provided and required by the software

component 42. The integration rule set 48 also includes resource access rules

10

that define the rules associated with access and receipt of the resources. The
integration rule set 48 also includes the communication or pipe mechanism rules
defining the transfer protocols needed to communicate with the software
component 42 and the communication/pipe medium (e.g., binary, TCP/IP, IEEE
802.11, middleware definitions, etc.) in which data and/or control is transferred
between software component (e.g., description of middleware, network,
operating system, etc.) and other software components. The integration rule set
48 can also include flow control rules (e.g., sequential, event driven) that indicate

the flow of control associated with the software component.

[0028] The architecture includes at least one negotiation engine 46 that
negotiates the flow process, the data transfers and/or control transfers between
software components. The negotiation engine can be distributed, centralized, or ee*°,

L 2l 24

a combination of both. A central negotiation engine can be employed at a L
remote system, or a respective negotiation engine can be associated with a

respective integration connector. The negotiation engine 46 can be an o2
executable program/ or software process with built in intelligence for : ...’
communicating with other negotiation engines of respective dynamic connectors, cees

.

so as to define transfers of data and/or control between software components. eoee

[0029] The negotiation engine 46 can include embedded data or programs
that may be developed prior to integration of software components, created
statically or dynamically at deployment or execution time. The negotiation engine
46 can include executable code that allows integration rules to be dynamically
created, thus impacting the execution of the integrated system. The negotiation
engine 46 can also include executable code for invoking the spontaneous
integration of its respective software component 42. Additionally, the negotiation
engine 46 can include executable code operative to spontaneously modify
integration configurations in response to changes caused by system/component
changes and/or the adding of additional systems/components to the current
integrated system. Therefore, the dynamic integration connector 44 can
constantly monitor interface and workflow connection opportunities available at

any instant in time.

11

[0030] The negotiation engine 46 can employ a set of sub-components 50
to define transfers of data and/or control between the software component 42
and associated connected software components. The set of integration sub-
components 50 can include data selection and negotiation protocols, data
configuration protocols, and data transfer protocols. The negotiation engine 46
employs data selection and negotiation protocols that allow the negotiation
engine 46 to communicate and negotiate data and control transfers between

other software components through respective dynamic connectors.

[0031] For example, this can be accomplished by negotiation engines of
respective software components publishing their respective integration rule sets

and subscribing to integration rule sets associated with other software

sede
»

components. The negotiation engine 46 selects from a plurality of available data

configuration protocols based on resource syntax and semantic rules defined in o

the integration rule set for its software component and a connecting software

component to translate or map data and/or control types between connecting 'E'

software components. The negotiation engine 46 selects from a plurality of E".:'
available data transfer protocols based on communication mechanism rules RIYIN
defined in the integration rule set for its software component and a connecting ,:::. :

software component to define data transfer mechanism for data and/ or control
between connecting software components. Finally, the negotiation engine 46
defines an execution flow of data and /or control based on flow control rules
defined in the integration rule set 48 for its software component and the
integration rule set of a respective connected software component.

[0032] FIG. 3 illustrates an integration rule set 60 associated with a
dynamic integration connector in accordance with an aspect of the present
invention. The integration rule set 60 defines rules associated with integration of
a respective software component. These rules include an identifier associated
with the software component to be integrated and the syntax and the semantics
of the resources (data, processes, functions) provided and required by the
software component. The integration rule set 60 also includes interaction rules

resource access rules and goals that, for example, define the frequency of

12

interaction desired and triggering events for these interactions. The integration
rule set 60 also includes resource access rules that define the frequency of each
resource needed/provided, and/or describe the conditions under which the
resources are provided or required. The integration rule set 60 also includes the
communication or pipe mechanism rules defining the transfer protocols needed
to communicate with the software component and the communication/pipe
mechanism being used to integrate with other systems (e.g., description of
middleware, binary transfer, network protocol, operating system protocol, etc.).
[0033] The integration rule set 60 can also include flow-control rules that
indicate the flow of control associated with the software component. For
example, the flow-control rules can define that the software component is driven

at an end of the execution of the component (e.g., a linear flow of control), oris ~ esse_

driven by a request for needed resources or the provision of resources to the _:-;:;
external world (e.g., an event-driven paradigm), or on a time-periodic basis (e.g., T
a time-driven paradigm). ‘3‘

[0034] FIG. 4 illustrates a dynamic integration connector system 70 in E.'.:’
accordance with an aspect of the present invention. The dynamic integration reee,

connector system 70 provides an interface between a software component and
other intelligent integration connectors / software components over a
communication medium (e.g., operating system, network, middleware, etc.). The
dynamic integration connector system includes a negotiation engine 72, an
integration rule set 60, and a set of integration sub-components 74. The
negotiation engine 72 is an executable program / or software process that
communicates with other negotiation engines of respective dynamic integration
connectors to define transfers of data and/or control between software
components. It is to be appreciated that a single negotiation engine can be
employed to communicate with integration connectors and define data and/or
control transfers between software components. The negotiation engine 72
extracts information from an integration rule set 60. As previously stated, the

integration rule set 60 defines rules associated with the syntax, semantics,

13

access, communication medium and flow control of resources (e.g., data,

process, control) of an associated software component.

[0035] The negotiation engine 72 employs data selection and negotiation
protocols 76 that allow the negotiation engine 72 to communicate and negotiate
data and control transfers between other software components through
respective dynamic connectors. For example, this can be accomplished by
negotiation engines of respective software components publishing their
respective integration rule sets and subscribing to integration rule sets
associated with other software components. The negotiation engine 72 selects
from a plurality of available data configuration protocols 78 to map data and/or
control from a respective software component to one or more other software
components. The negotiation engine 72 selects from a plurality of available data
transfer protocols 80 based on rules defined in the integration rule set 60 and
respective integration rule sets of connecting components to define a data

transfer mechanism for data and/ or control to one or more other software L

components. Finally, the negotiation engine 72 defines an execution flow of data

and /or control based on rules defined in the integration rule sets executing flow

oo
o o .
[} Lo

control between the negotiation engine's software component and one or more
other software components. RITTH

[0036] The negotiation engine 72 can then dynamically generate a vee_ o
negotiation profile 82 at initiation or during execution (or later use) that defines N
the data and/or control connectivity between the software component and a

connecting software component based on the negotiations. A respective

negotiation profile can be generated for communication with each connected

software component and/or data within a respective connected software

component. Alternatively, a single negotiation profile can be employed to define
variables and/or flow-control associated with communication with all connected

software components for a given software component.
[0037] FIG. 5 illustrates a block diagram of a system 100 for integration of
software components in accordance with an aspect of the present invention. The

system 100 includes a first software component 102 and an associated first

14

dynamic integration connector 103, and a second software component 120 and
an associated second dynamic integration connector 121. The first dynamic
integration connector 103 includes an integration rule set 104 that defines rules
associated with available resources and desired resources of the first software
component 102. These rules define the necessary syntax and the semantics,
resource access, communication mechanisms, and flow-control required to
integrate with the first software component 102. The second dynamic integration
connector 121 also includes an integration rule set 122 that defines rules
associated with available resources and desired resources of the second
software component 120. These rules define the necessary syntax and the
semantics, resource access, communication mechanisms, and flow-control

required to integrate with the second software component 120.

[0038] Upon invocation, a negotiation engine 106 of the first dynamic

integration connector 103 begins searching across the communications medium -, ,,.

for other integration connectors, using mechanisms and protocols built into every «° "3
integration connector for that purpose. Since these mechanisms and protocols

could be the same in every instance of the integration connector, if there is a .

communications path between any two integration connectors at the time of the
search, negotiations can take place. For example, negotiation engine 106 RITTH

communicates with a negotiation engine 124 of the second dynamic integration ~ +e«_ s
connector 121 via one or more data selection and negotiation protocols 108, 126. h
The negotiation engine 106 publishes the integration rule set 104 to the

negotiation engine 124, and the negotiation engine 124 publishes the integration

rule set 122 to the negotiation engine 106. The negotiation engine 106 then

subscribes to resources in the integration rule set 122, while the negotiation

engine 124 subscribes to resources in the integration rule set 104. Based on
negotiation between the negotiation engines 106 and 124, the negotiation engine

106 builds one or more negotiation profiles 114 and the negotiation engine 124

builds one or more negotiation profiles 132.

[0039] The negotiation profiles 114 define rules for the first software

component 102 when providing and receiving resources and/or control from the

15

second software component 120. The negotiation profiles 132 define rules for
the second software component 120 when providing and receiving resources
and/or control from the first software component 102. These rules can be in the
form of software component and control mechanisms that define data
translations, conversions or mappings between resources and/or flow-control
between the first software component 102 and the second software component
120, and data transfer protocols that allow data and control transfer
communications between the first software component 102 and the second
software component 120. The negotiation engines 106 and 124 select from a
plurality of available data configuration protocols 110, 128 based on rules defined
in the integration rule sets 104 and 122 and a plurality of available data transfer
protocols 112, 130 based on communication mechanism rules defined in the
integration rule sets 104 and 122 to define data transfer mechanism for data and/

or control between first and second software components 102 and 120. The

e ®eo

negotiation profiles 114 and 132 can also define an execution flow of data and /or. R

control, based on flow-control rules defined in the integration rule sets 104 and

122. .
[0040] For example, each particular data element can include its own P
mapping or schema for translating data between data formats. Furthermore, RITIN

each receipt or transmission of data and/or flow-control can invoke execution of a «e«_ ¢
particular process or program. Additionally, each transmission of data or control .
can be transferred over different communication pipes and/or protocols. All of
this information is stored in the negotiation profiles 114 and 132, and employed
during normal execution to establish integrated execution between the first and

second software components 102 and 120.

[0041] An integration design station or monitor 140 can be employed to
allow a central control over, or manual intervention / over-ride of the integration
process. The integration design station 140 allows a user to submit configuration
information to the negotiation engines 106 and 124 of the respective dynamic
integration connectors 103 and 121. Additionally, the integration design station

140 can provide functionality associated with initiations, sequential control, and

16

monitoring of the business work-flow process, over-riding capabilities associated
with the spontaneous negotiations, in addition to compelling negotiations

between the first and second integration connectors 103 and 121. For example,
the integration design station 140 can compel negotiations by modifying rules in

the integration rule sets 104 and 122.

[0042] In view of the foregoing structural and functional features described
above, a method will be better appreciated with reference to FIG. 6. Itis to be
understood and appreciated that the illustrated actions, in other embodiments,
may occur in different orders and/or concurrently with other actions. Moreover,
not all illustrated features may be required to implement a method. Itis to be
further understood that the following methodologies can be implemented in
hardware (e.g., a computer or a computer network as one or more integrated
circuits or circuit boards containing one or more microprocessors), software (e.g.,
as executable instructions running on one or more processors of a computer °.
system), or any combination thereof. o v
[0043] FIG. 6 illustrates a methodology for integrating software

components in accordance with an aspect of the present invention. The

LX) .
*

methodology begins at 200, with a configuration setup activity. The configuration ¢ e
setup activity establishes the logical and physical connections between an

seee

integration connector and its respective software component. The methodology e«
then proceeds to 210. At 210, an integration connector publishes an integration "
rule set associated with a software component. Publishing of the integration rule

set allows other software components to view the integration rules associated

with the software component. The integration rule set defines the available and

required resources for the software component. In particular, the integration rule

set defines rules associated with the syntax, semantics, access, communication

medium and flow control of resources (e.g., data, process, control) of an

associated software component. At 220, the integration connector subscribes to

one or more other integration rule sets associated with connecting software

components. The methodology then proceeds to 230.

17

[0044] At 230, the integration connector begins negotiating access
profiles, establishing connection profiles and time profiles with one or more other
software components via respective integration connectors. At 240, the
integration connector defines flow control rules for exchanges between the
software component and any connecting components. At 250, an integration
design station can be employed to monitor, override and/or compel data and/or
control access, for example, by redefining the integration rules of one or more
integration rule sets of the software component and any connecting software
components. At 260, the integration connector builds a negotiation profile.
Additionally, negotiation profiles can be built by one or more connecting
components. The negotiation profiles define rules for the software components
when exchanging resources and/or control. These rules includes data
translations, conversions or mappings between resources and/or flow-control

between the software components, and data transfer protocols that allow data . .

and control transfer communications between the software components. At 270, «* «s
data and/or control are exchanged between software components employing the
respective negotiation profiles. .
[0045] It is to be appreciated that the integration connectors can be
operative to modify dynamically the respective negotiation profiles and respective ***°,

exchanges, based on changes in one or more software components of the coe, t
system, and/or addition of other software components that are added to the N
system.

[0046] FIG. 7 illustrates a computer system 320 that can be employed to

execute one or more embodiments employing computer executable instructions.

The computer system 320 can be implemented on one or more general purpose
networked computer systems, embedded computer systems, routers, switches,

server devices, client devices, various intermediate devices/nodes and/or stand

alone computer systems.

[0047] The computer system 320 includes a processing unit 321, a system
memory 322, and a system bus 323 that couples various system components

including the system memory to the processing unit 321. Dual microprocessors

18

and other multi-processor architectures also can be used as the processing unit
321. The system bus may be any of several types of bus structure including a
memory bus or memory controller, a peripheral bus, and a local bus using any of
a variety of bus architectures. The system memory includes read only memory
(ROM) 324 and random access memory (RAM) 325. A basic input/output
system (BIOS) can reside in memory containing the basic routines that help to
transfer information between elements within the computer system 320.

[0048] The computer system 320 can includes a hard disk drive 327, a
magnetic disk drive 328, e.g., to read from or write to a removable disk 329, and
an optical disk drive 330, e.g., for reading a CD-ROM disk 331 or to read from or
write to other optical media. The hard disk drive 327, magnetic disk drive 328,
and optical disk drive 330 are connected to the system bus 323 by a hard disk
drive interface 332, a magnetic disk drive interface 333, and an optical drive
interface 334, respectively. The drives and their associated computer-readable .

media provide nonvolatile storage of data, data structures, and computer- LI

executable instructions for the computer system 320. Although the description of

computer-readable media above refers to a hard disk, a removable magnetic disk .:.
and a CD, other types of media which are readable by a computer, such as Pt
magnetic cassettes, flash memory cards, digital video disks and the like, may RIXTH

also be used in the operating environment, and further that any such media may ««s_ ¢

contain computer-executable instructions. B
[0049] A number of program modules may be stored in the drives and

RAM 325, including an operating system 335, one or more executable programs

336, other program modules 337, and program data 338. A user may enter

commands and information into the computer system 320 through a keyboard

340 and a pointing device, such as a mouse 342. Other input devices (not

shown) may include a microphone, a joystick, a game pad, a scanner, or the like.

These and other input devices are often connected to the processing unit 321

through a corresponding port interface 346 that is coupled to the system bus, but

may be connected by other interfaces, such as a parallel port, a serial port or a

19

universal serial bus (USB). A monitor 347 or other type of display device is also

connected to the system bus 323 via an interface, such as a video adapter 348.

[0050] The computer system 320 may operate in a networked environment
using logical connections to one or more remote computers, such as a remote
client computer 349. The remote computer 349 may be a workstation, a
computer system, a router, a peer device or other common network node, and
typically includes many or all of the elements described relative to the computer
system 320. The logical connections can include a local area network (LAN) 351
and a wide area network (WAN) 352.

[0051] When used in a LAN networking environment, the computer system
320 can be connected to the local network 351 through a network interface or
adapter 353. When used in a WAN networking environment, the computer

system 320 can include a modem 354, or can be connected to a communications

server on the LAN. The modem 354, which may be internal or external, is *ecee’
connected to the system bus 323 via the port interface 346. In a networked o’ .: .

environment, program modules depicted relative to the computer system 320, or .,

portions thereof, may be stored in the remote memory storage device 350.

[0052] What have been described above are examples of the present * v
invention. ltis, of course, not possible to describe every conceivable .
combination of components or methodologies for purposes of describing the *tc. s

present invention, but one of ordinary skill in the art will recognize that many
further combinations and permutations of the present invention are possible.
Accordingly, the present invention is intended to embrace all such alterations,
modifications and variations that fall within the spirit and scope of the appended

claims.

20

CLAIMS

What is claimed is:

1. A computer system to integrate software components, the
computer system having a software integration architecture comprising:
an integration rule set corresponding to each of a plurality of software
components, the integration rule set defining rules to access and receive
resources for a given software component for integrating the given software
component with the remaining software components of the plurality of
software components;
a negotiation engine that is operative to negotiate dynamically with
respective connecting software components, the negotiation engine being
capable of selecting data protocols from a plurality of data protocols to define
rules to integrate the software components based on the integration rule set;
and RITTN
an integration sub-component set that provides a selection of data o oo

configuration protocols and data transfer protocols that can be employed by

the negotiation engine to define flow control, data conversions and *e’
communication mechanisms for transferring data and control between the el
software component and at least one connecting software component,

whereby the computer system integrates connecting software components.

2. The architecture of claim 1, wherein an integration rule set
defines rules associated with the syntax, semantics, access, communication

medium and flow control of resources of an associated software component.

3. The architecture of claim 1 or 2, wherein the resources are one

of data, processes, and control of a respective software component.

4, The architecture of claim 1, 2 or 3, wherein each software
component has a respective negotiation engine, the negotiation engines
communicate with one another employing data selection and negotiation

protocols.

21

5. The architecture of any preceding claim, wherein the negotiation
engine selects from a plurality of data configuration protocols based on rules
defined in the integration rule sets for translating data and/or control between

software components.

6. The architecture of any preceding claim, wherein the negotiation
engine selects from a plurality of data transmission protocols based on rules
defined in the integration rule sets for transmitting data and/or control between

software components.

7. The architecture of any preceding claim, wherein the negotiation
engine includes executable code operative to spontaneously modify an
integrated system in response to at least one of changes in at least one

software component and an addition of a software component to the system.

8. The architecture of any preceding claim, wherein a negotiation
profile is generated for each software component that defines data and/or
control connectivity between a respective software component and a

connecting software component based on the negotiations.

9. The architecture of claim 8, wherein the control mechanisms
comprise data access schemas that allow the negotiation engines to extract

data from software components.

10. The architecture of claim 8 or 9, wherein the negotiation profiles
comprise software programs and control mechanisms that implement data
links, format conversions and synchronization for control and/or data between

software components.

11. The architecture of claim 10, further comprising an integration
design station that provides functionality associated with at least one of:
initiating integration between dynamic software components; sequential
control between software components; event control between software

components; and monitoring of data and control flow processes.

22

12, The architecture of any preceding claim, further comprising an
integration design station operative to compel negotiations between
negotiation engines by modifying integration rule sets associated with

software components.

13. A method of using a computer system to integrate software
components, the method comprising:

publishing an integration rule set corresponding to a software
component;

subscribing to an integration rule set corresponding to a connecting
software component, the respective integration rule sets defining rules for
access and receipt of resources for integrating the software component with

the connecting software component;

negotiating with the connecting software component by selecting data vooe
protocols from a plurality of data protocols to define data access profiles, .“-.:
connection profiles and flow control profiles for the exchange of data and/or "
control between the software component and the connecting software .ie
component based on the published integration rule set and the subscribed to ':".'.'
integration rule set; and I

building a negotiation profile that defines the data and/or control
connectivity between the software component and the connecting software

component based on the negotiations.

14. The method of claim 13, the negotiating with the connecting
software component comprising selecting from a plurality of data configuration
protocols for translating data and/or control between the software component

and the connecting software component.

15. The method of claim 13 or 14, the negotiating with the
connecting software component comprising selecting from a plurality of data
transmission protocols for transmitting data and/or control between the

software component and the connecting software component.

23

16. The method of claim 13, 14 or 15, further comprising modifying
the negotiation profile in response to at least one of changes in at least one
software component and an addition of a new connecting software

component.

17. The method of claim 13, 14, 15 or 16, wherein the building of the
negotiation profile comprises generating software programs and control
mechanisms that implement data links, format conversions and
synchronization for control and/or data between the software component and

the connecting software component.

18. The method of any one of claims 13 to 17, further comprising
compelling negotiations between the software component and the connecting

software component by modifying integration rule sets associated with at least

one of the software component and the connecting software component. seve
19. The method of any one of claims 13 to 18, further comprising)

establishing logical and physical connections between the software et

component and its publishing integration rule set. ':.'...‘

20. A dynamic integration system comprising:

means for generating integration rule sets for software components,
the integration rule sets defining rules for access and receipt of resources for
integrating software components;

means for negotiating data access profiles, connection profiles and
flow control profiles for the exchange of data and/or control between software
components based on the integration rule sets, the means for negotiation
selecting data protocols from a plurality of data protocols;

means for building negotiation profiles that defines the data and/or
control connectivity between software components; and
means for compelling negotiations by modifying integration rule sets

corresponding to the software components.

24

21. The system of claim 20, wherein the means for building

negotiation profiles comprises selecting between a plurality of data

configuration protocols and a plurality of data transfer protocols based on the
integration rule sets.

22. A software integration architecture, a method of integrating

software components or a dynamic integration system substantially as

described with reference to one or more of Figures 1 to 7.

	Bibliography
	Drawings
	Description
	Claims

